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SUMMARY 
At sufficiently high temperature the oxygen and nitrogen 

molecules in air dissociate into atoms. Energy is required for 
this decomposition and, furthermore, if the temperature is not 
uniform, concentration gradients are formed and energy is 
transferred by the consequent interdiffusion of atoms and 
molecules. In  this paper, a simple model of a gas is formulated 
to  illustrate the effect of these processes on heat transfer in three 
situations : (1) in a layer of gas at rest between two walls at different 
temperature, (2) in Couette flow, and ( 3 )  in a laminar boundary 
layer on a flat plate. 

In the model, the law for the rate of reaction (dissociation and 
recombination) is of an especially simple form with the speed of 
reaction characterized by a single parameter. When the parameter 
becomes large, the gas approaches chemical equilibrium ; at the 
other extreme, no reaction occurs within the gas. 

Two chemical conditions of the walls are considered, one being 
that the walls are catalytic (the surface reaction rate is assumed 
sufficiently high to hold the gas at the wall in chemical equilibrium), 
and the other that the walls have no effect on the reaction, i.e. they 
are non-catalytic. 

The most important of the simplifications made are : (a )  The 
reaction rate law is put in a form in which the equilibrium 
concentration of atoms varies linearly with temperature. Thus, 
there is only one temperature at which the gas is undissociated 
instead of the actual range of temperature. ( b )  In problems (1) 
and (2), p, k, and pD are taken to be constant. ( c )  In problem ( 3 )  
the Lewis number is assumed to be unity. (d) Only binary 
mixtures of atoms and molecules are considered (so that ionization 
and more complex dissociation processes are not covered). 
( e )  Coupling of irreversible flows, such as that causing thermal 
diffusion, is neglected. (f) Only problems in which the pressure 
is constant are considered. 

* The work in this paper was performed while the author was on leave from the 
Department of Aeronautical Engineering, University of Michigan. 

F.M. H 



114 James E. Broadwell 

1. INTRODUCTION 
When the temperature of air is raised sufficiently, for instance, by 

being brought to relative rest in the boundary layer on a body moving at 
a very high speed, some of the molecules of the constituent gases dissociate 
into atoms. Energy is ' absorbed ' in the dissociation and is transported 
by the interdiffusing atoms and molecules. Both processes affect the heat 
transfer through the mixture. This paper describes three instances of 
heat transfer in a simple model of a dissociating (and recombining) gas. 
These are : (1) The heat transfer through a layer of the gas at rest between 
two walls at different temperature. (2) Couette flow. (3)  Boundary-layer 
flow. 

Leipmann & Bleviss (1956) and Liepmann & Roshko (1957) have 
considered the Couette flow of a dissociated gas which is in chemicaI 
equilibrium.. Their work suggested the present study in which the 
assumption of equilibrium is dropped but in which other simplifications 
are introduced. 

A paper by Hirschfelder (1957) dealing with heat transfer in a chemically 
reacting mixture appeared after the present work was essentially complete. 
There the exact equations governing the heat transfer through a layer of 
a reacting gas are discussed and an iterative method of solution, applicable 
when the reaction rates are high, is developed. The similarity between the 
character of these solutions and those of the present model, when a reaction 
rate parameter is large, are pointed out below. 

Figure 1. Equilibrium dependence of atom concentration on temperature. 

To see how the heat transfer process is modified by the dissociation 
of the fluid, consider the forward and reverse reactions 0, + 2 0  taking 
place in a closed vessel. These reactions establish an equilibrium 
composition that is a function of pressure and temperature. Thus, if the 
gas is heated slowly and uniformly at constant pressure, the mass fraction, 
all of atoms varies as shown in figure 1 (see, for example, Lighthill (1957)). 

As the atoms appear, the curve of enthalpy us temperature becomes 
steeper; this is a consequence of the energy required to decompose the 
molecule. 
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On the other hand, if the gas is not heated uniformly, spacewise variations 
in composition as well as in temperature appear. The temperature gradients 
establish heat fluxes and the concentration gradients give rise to mass flows 
and diffusion. The diffusing components transport their enthalpy with them, 
and this transport constitutes an energy flow that may be large compared 
with that caused by the thermal gradients. 

In general then, dissociation (and recombination) directly alters heat 
transfer processes : firstly by creating ' sources ' and ' sinks ' of energy, and 
secondly by providing, through diffusion currents, another energy transport 
mechanism. 

There are, of course, other indirect (but important) consequences, such 
as the change in viscosity, specific heats, gas constant, and so forth. Let 
us consider again a gas in an enclosure. Suppose the temperature is 
suddenly and uniformly increased, then the rate of production of atoms 
exceeds the rate of disappearance and the mixture approaches the new 
equilibrium at a finite rate which depends upon the pressure, the temperature, 
and the concentration of atoms. Now notice that a gas can be kept 
permanently out of equilibrium by diffusion, even when it is stationary 
and the heat transfer processes are steady. It is, therefore, of interest 
and it is one purpose of this paper to study how departure from equilibrium 
affects the heat transfer mechanism in a dissociating gas. 

In this paper only the dissociation of a single diatomic gas into a binary 
mixture of atoms and molecules is treated. The ionization and dissociation 
of more complex gases and mixtures of gases is not considered. 

In  8 2 the equations governing the flow of a reacting gas are given. The 
simplifications leading to the model gas are discussed in $ 3  and its behaviour 
in the three situations described above is presented in the final sections. 

2. GENERAL EQUATIONS 

2.1. Conservation equations 
The equations governing the flow of a mixture of interdiffusing and 

chemically reacting gases are derived in Hirschfelder, Curtiss & Bird (1954). 
Before these equations can be stated, however, it is necessary to define the 
several velocities that arise in such a flow. 

Consider a mixture of gases moving relative to some fixed coordinate 
system. A small plane, perpendicular to  the flow of constituent i, and 
moving so that, on the average, no molecules of i cross it, moves with the 
velocity of i, yi. The mass flow of i per unit area relative to the fixed 
coordinate system is ni mi yi, where n is the number of moles per unit volume 
and m is the molecular weight. The total mass flow per unit area is 
z n i m i  yi. Thus, with the mass density p given by p = z n i m i ,  the mass 
average velocity V is defined by V = (l/p) z n i m i y i .  Finally, the 
diffusion velocity of the ith component, Vi, is the velocity of that component 
relative to the mass average velocity; thus Vj = yi - V. 

H2 
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In the following, the conservation equations, taken from Hirschfelder 
et al. (1954), are stated first for a mixture composed of an arbitrary number 
of components and then for a mixture containing but two. In the problems 
treated later, these two components will be the atoms and molecules of a 
.dissociated diatomic gas. 

Only very simplified forms of these equations are needed in the first 
two problems treated in this paper. Nevertheless, we give the complete 
,equations here in order to describe more clearly the physical processes 
involved and because they are needed in the boundary layer problem of 5 6. 

Conservation of mass 
The equation for the conservation of mass of each species can be written 

where Ki is the mole rate of production of the ith component per unit 
volume by chemical reaction. 

Note first that the multiplication of this equation by mi, the summation 
of the resulting equation over all i, and use of the overall mass conservation 
condition z m i K i  = 0, lead to  the usual continuity equation 

&,/at + V. ni(V + V i )  = Ki, (1) 

+/at + v. (pV) = 0. (2) 
The variables V i  and Ki in equation (1) are determined by the 

thermodynamic properties and their gradients. Consider first the diffusion 
velocity. In general, diffusion may be caused by gradients in the pressure 
and temperature as well as in concentration. In many important situations 
the last-named cause is dominant, and it is the only one considered in the 
following discussion, i.e. cross-coupling of the fluxes is neglected. If, in 
addition to this restriction, the mixture consists of only two components, 
then (see Hirschfelder et al. (1954, p. 516)) 

where D is the binary diffusion coefficient and ui the mass fraction of the 
ith component defined by 

v i =  -(D/ ai)Vai, i = 1, 2, (3) 

We turn next to the variable Ki, the net rate of production of species i 
Such a reaction is described by an equation of the by chemical reaction. 

form 
PlJ1+/3zJ2+ ... f v l J , + v 2 J 2 +  ... . 

Ji denotes the ith chemical component, and p and v the stoichiometric 
coefficients of reactants and products, respectively. The net rate of 
reaction, r ,  can be put in the form (see Hirschfelder et al. 1954, p. 748) 

r = K f (  T)nfvz$ ... - K,( T)n;ln$ ..., 
in which K, and K, are the rate constants for the forward and reverse 
reaction. Then 

Ki = (vi - / 3 i ) ~ .  
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Also, introducing the mole fraction, Xi = ni/n and with n =p/(RT), we 

As a specific example of a reaction rate law, consider that for the 
Hirschfelder (1957) states that in decomposition of oxygen 0, + 20. 

this reaction the net rate of production of atoms, K,, is given by 
Kl = - n3K,[X: - ((1 -X,)/p}exp(l-58 - 60 OOO/T)], 

where 
K, = 1.2 x 1016(T/300)5/2 cm6/mole2 sec, 

and p is pressure in atmospheres, T the absolute temperature in degrees 
Kelvin, and X ,  denotes the mole fraction of atoms. 

It should be noted that the equation formed by setting K ,  equal to 
zero yields the equilibrium composition of the mixture as a function of the 
pressure and temperature. 

The expression for the reaction rate Ki and the above equation for the 
diffusion velocity Vi  may now be put in equation ( 1 )  to form the mass 
conservation expression for the ith component. When we have two 
components we need, in addition to the overall continuity equation (2), 
a conservation equation for only one of the two, for ccl say, 

This equation comes, with some algebraic manipulation, from equation (1)  
with the use of equations (2) and (3). The appropriate expressions for K,  
will be inserted later. 

Conservation of momentum 

equations of motion are the usual ones” : 

(aa,/at +v.va1) - v. ( p D  val) = m1 K ~ .  (4) 

In  terms of the mass average velocity, V, with components u,, the 

in which p is the viscosity of the mixture and 

Conservation of energy 

D i m  = a p t  + ua apxu .  

The energy equation is 
Dh Dp 

p - - - = v. (k V T -  ~ p P i h , V J  +@, 
Dt D t  i 

in which 0 is the dissipation function, given by 

*The  equation given by Penner (1955) and derived by von Kirmin  contains 
additional stress terms arising from diffusion. In general, these would be smalf 
compared to the usual stress terms and need not, especially in view of the later 
approximations, be included here. 
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.and h is the enthalpy per unit mass of mixture. The energy carried by 
diffusion is zpPshiVi ,  in which hi is the enthalpy per unit mass of 
component i. The symbol k denotes the thermal conductivity of the 
mixture with the components treated as non-reacting gases. 

2.2. Thermodynamic properties of the mixture 
The equation of state of a mixture of perfect gases is 

which for a binary mixture becomes 

p = p . f ! [ l +  m2 (2 - l ) u , ] T .  

Ri is the gas constant for the ith component. 

which 
The enthalpy per unit mass of mixture is given by h = z u i h i ,  in 

T 

0 
hi = (C&dT+h;,  

where h; is the enthalpy of formation extrapolated to absolute zero and C, 
the specific heat at constant pressure. 

2.3. Boundary conditions 
The boundary conditions that are to be applied to the temperature 

and mass average velocity are the usual ones and require no special 
discussion. They will be stated later for each problem. However, the 
conditions to be satisfied by the concentrations at solid boundaries may 
not be equally familiar. They are discussed briefly here. 

If the wall has a catalytic effect on a reaction, then there may be a net 
rate of production of the species involved, per unit area of the wall. In 
steady flow, this production of each species must be balanced by the flux 
normal to, and at, the wall. In the following, two simple extremes are 
considered: (1) the wall is not catalytic, and (2) the wall reaction rate is 
such as to hold the concentrations there in chemical equilibrium at the 
wall temperature. 

When the wall is non-catalytic, the flux of each component normal to 
the wall must vanish at the wall. Hence, if, as in the problems considered 
in this paper, the gradients are normal to the wall (or in the boundary-layer 
case are assumed to be), then 

nimiVi),,ll = -pDVuJwaI1 = 0. 

3. IDEALIZED GAS AND SIMPLIFIED EQUATIONS 

In this section we state the properties of a simplified model of a gas that 
approximates, at least qualitatively, the behaviour of the mixture of atoms 
and molecules formed when a gas, such as oxygen, is subjected to a 
temperature gradient at temperatures high enough to cause dissociation. 
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First, the two components are assumed to be perfect gases with constant 
specific heats. Hence 

where ho is the enthalpy of formation and the subscripts 1 and 2 denote 
atoms and molecules, respectively. Then 

h = alhl+azh2 
or, since a, + c12 = 1, 

h = (Cp12 T+%[(cp)i- (Cp)2IT+Ah0m1, 

h, = (CP), T+h$ h, = (C,), T+h$ 

where Aho = h,O-hi. That is, Aho is the enthalpy of dissociation at 
absolute zero and hi is taken to be zero. Now {(C,)l-(C,)z}/(C,)z is 
small; it is of the order of 10-1 for oxygen. Further, [(C,), - (C,),]T 
is small compared with Aho for temperatures not greatly exceeding those 
for complete dissociation. Hence, we neglect the second term in comparison 
with the first and third and drop the subscript on C, to obtain 

h = C, T+ Ah's,. 

Figure 2. Reaction rate law. 

Consider next the reaction rate law, an example of which was given 
in $2. When a single gas dissociates or recombines and the pressure is 
constant, then the net rate of formation of atoms, K,, is a function of the 
temperature and the weight fraction of atoms, i.e. K, = Kl(T,  q). The 
shape of this function depends, of course, on the particular reaction but 
in general is as sketched in figure 2. 
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The approximation to the reaction rate law that is to be used in this. 
paper consists of the first-order terms in a Taylor series expansion of Kl 
about a point 0 on the equilibrium line 

K,= - ( T - T o ) +  - (cc1-al0). (;?>, (2)o (7) 

(In the boundary layer problems, 5 6, this approximation is slightly 
modified.) This planar approximation for the surface K,  = Kl( T ,  a,)' 
cannot, of course, be accurate over the entire range of the variables. It 
requires, for instance, a linear variation of the equilibrium concentration 
of atoms with temperature, a result that is obviously incorrect near a, = 0 
and a, = 1.0, and which, of course, makes no sense when the temperature 
is either below that at which dissociation begins or exceeds that for complete 
dissociation. Furthermore, in the case of oxygen, while it is true that the 
equilibrium concentration of atoms is approximately linear with temperature 
for a, not near zero or unity, the slope, aK,/aa,, of the surface varies greatly 
along the equilibrium line. A rate law of the form in equation (7) does, 
nevertheless, describe qualitatively the dissociation (and recombination), 
at a finite rate of a gas in a range of temperature between the onset and 
completion of dissociation. 

The stationary gas and the Couette flow problems are further idealized 
by the assumption that k ,  p and pD are constants. 

The conservation equations for a gas with the above properties can then 
be summarized as follows. The overall continuity equation is unchanged ; 
it is 

Equation (4), the conservation equation for the atoms, becomes 
p [  aa,/at + V . Val] - pDV2al = bl a, + b2 T + b,. 

The right-hand side, the rate of production of atoms, is temporarily written 
in the general linear form shown. A non-dimensional temperature will be 
introduced and the constants prescribed for each particular problem. 

ap/at + v. (pV) = 0. 

When p is constant the equation of motion is 

In the energy equation (6), the term zp ih iV i  can be simplified to 
p(av/at + v . vv) = - vp + pv2v + + v(v . v). (8) 

z p i  hi V i  = - h, pDVa, - h2pDVa2 
i 

= - (h, - h,)pDVa, 
= -AhopDV~l ,  

when the term [ ( Cp)l - ( Cp)2]  T is neglected. Hence 

Dh Dp 
Dt Dt 

p - - - = kV2T+AhopDV2~,+@~ (9 

4. GAS AT REST BETWEEN TWO WALLS 

4.1. Effect of reaction rate 
Before studying the behaviour of the gas described in the preceding 

section in Couette flow, it is instructive to  examine its heat transfer 
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characteristics in the absence of motion. Consider, then, the case in which 
the gas is confined between two infinite walls, a distance s apart, at constant 
temperatures T, and T , .  

In this situation, the atom conservation equation (4) becomes 
- pD d2u,/dy2 = m, K, = b, tcl + b, T + b,, 

where y is the coordinate normal to the walls. 
reduces to 

The energy equation (9). 

k d2T/dy2 + AhOpD d2a,/dy2 = 0. 
The overall continuity equation and the equations of motion are satisfied 

Now write m, Kl in the form 
by V = 0 and p = constant. 

m1 Kl = g(x1n 8 - El),  
where 

and g and alrL are constants. Thus we assume that in chemical equilibrium 
the mixture would be composed completely of molecules at the temperature 
of the cold surface, y = 0, and that at the temperature of the hot boundary, 
y = s, the ratio of the density of atoms to the density of the mixture would 
be t c l l r .  The rate of the reaction is characterized by the magnitude of g. 

T o  put the equations in non-dimensional form, let 

71 = Y b ,  tc = Ml/%, G = (gs2)/(pD), 
pDAhOtc,, - Le Ahotcln H =  - 
V s -  T,) C,(Ts- Tw)’ 

in which Le is the Lewis number, pDC,/k. The dimensionless temperature 
8 is defined above. 

In  these terms we have 
d2tc/dq2 - G(tc - 8) = 0, 

d28/dq2 + Hd2tc/dq2 = 0. 
(10) 

( 1 1 ) d  
The first of these equations is a statement of the balance between the 

atom production in a layer of the gas and the net diffusion out of the layer. 
The constitution of the parameter G reflects the fact that it is the ratio 
of the reaction rate to the diffusion rate that determines the degree of 
departure from chemical equilibrium. 

In equation (ll), N is a measure of the energy carried by mass diffusion 
relative to that carried by thermal conduction. The energy transport by 
diffusion comes about from the dissociation of molecules in the neighbourhood 
of the hot wall, the diffusion of the resulting atoms towards the cool wall, 
and their subsequent recombination. 

When the walls are not catalytic the boundary conditions on tc are 

From the definition of 8, O(0) = 0 and 8(l) = 1. 
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Solutions to equations (10) and (1 1) satisfying these boundary conditions 
and for various values of the reaction rate parameter G are given in figure 3. 
The unbroken line is the atom concentration, and the broken one the 
temperature profile. Only half the channel is shown in this figure since 
the solutions are antisymmetric about the centreline. The parameter H 
has been set equal to 9, an arbitrary value large enough to show plainly the 
effect of dissociation. 

0, fx 

Figure 3. Temperature and atom concentration profiles for non-catalytic walls, H = 9. 
Temperature 0 given by broken lines, Effect of reaction rate parameter G. 

atom concentration 01 by unbroken lines. 

It can be seen from figure 3 that with increasing G a region in which u is 
almost exactly equal to 0, i.e. a region of chemical equilibrium, spreads 
from the centre of the channel toward the walls until finally at large G 
non-equilibrium conditions exist only in thin layers next to the walls. 
Hirschfelder (1957) observes that these thin regions of large change in 
temperature and concentration gradients constitute boundary layers. The 
reason for their existence can be clearly seen in the present simple analysis, 
since the energy transported by thermal conduction and by diffusion outside 
the boundary layers must, when the wall is non-catalytic, be transferred 
to the wall solely by conduction. Thus, the need for a greatly increased 
temperature gradient at the wall is evident. 
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In general, boundary layers will appear in the solution whenever the 
reaction rate is high and the boundary conditions are incompatible with 
chemical equilibrium. 

As G + co the fluid approaches equilibrium throughout the channel. 
The non-dimensional temperature gradient, dO/dT, approaches unity except 
at the walls where the limiting value is (1  +If). When G -+ 0 the energy 
carried by diffusion vanishes (since duldq 4 0) and dO/dT -+ 1 everywhere. 
The concentration of atoms becomes constant across the channel at a value 
in equilibrium with the average temperature, i.e. u = 0.5. 

Figure 4 shows the effect of G on the non-dimensional heat transfer, 
.qz,, defined by 

8- 

6- 

4," 4-  

2- 

0- 
0 

where qw is the heat flow to the wall y = 0 per unit area per unit time. 
This quantity, equal to dO/dq at the walls (when, as in this example, the 
walls are not catalytic), ranges from unity when G = 0 to (1 + H )  as G --f co, 

' O  1 

I I I I I 
'? 4 6 8 10 

Now to illustrate the influence of a surface catalytic reaction, let the 
reaction rate on both walls be such that the mixture there is held in chemical 
equilibrium. Then the boundary conditions are 

ci(0) = 0, 
q o )  = 0, 

ci(1) = 1, 
e( i )  = 1, 

and the solution is O = ci = 7, regardless of the reaction rate. The non- 
dimensional heat transfer is (1 + H ) ,  the value at the limit G = co in the 
preceding case. Note that there is a gradient in concentration at the wall 
and hence a flux of energy by diffusion to the wall. 
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Notice, also, that chemical equilibrium exists even for zero reaction 
rate, a result which follows, of course, from the particular boundary 
conditions that were assumed and from the linear reaction rate law. 

4.2. Chemical equilibrium 
This section on the heat transfer through a dissociating gas will be 

concluded by consideration of the simplifications which arise when the 
gas is assumed, at the outset, to be in chemical equilibrium. In this 
discussion the simplifications introduced in 3 3 are not needed. 

Consider then the energy equation which comes directly from 
equations (3)  and (6) for a two-component reacting mixture of gases 
between walls at different temperature 

Integrating once and remembering that (a1 + a2) = 1, we have 

dul = const. = q,. dT 
k -  +(hl-hZ)pD- 

dY dY 
Now in equilibrium, a1 = a, (T ,p) .  
the above equation can be written 

Then, since the pressure is constant, 

1+(h1-h2)-- 

in which the expression in brackets is fixed by the temperature. 
the expression 

Thus 

1 + ( h 1 - h 2 ) - -  
k dT 

may be considered to be an effective thermal conductivity, k,f. Hirschfelder 
(1957) also notes the possibility of such a definition and remarks that the 
expression is a generalization of the Eucken correction to the coefficient 
of heat conduction for polyatomic molecules*. 

Again regarding the mixture as a single gas, we define the effective 
specific heat by 

ax ah, ah, 
= (h1-h2)- l  +a1 - + a  

aT aT 2 F T '  
Then since 

*H. W. Leipmann also made use of this concept in a series of lectures at the 
Douglas Aircraft Company, California, in February and March 1955. 
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where cp, equal to [al(Cp)l+a2(Cp)2] ,  is the average specific heat of the 
mixture when the components are considered to be inert. Now notice 
that if the viscosity is assumed unchanged by the reaction, then an effective 
Prandtl number can be defined by 

k dT 

where the Lewis number is p D q / k .  Hence, when the Lewis number 
is unity (Lees (1956) estimates that for air Le = 1.45), the effective Prandtl 
number of the dissociating gas is the same as that for an inert mixture of 
the same composition. 

Kuo (1957) introduces a constant effective Prandtl number into his 
study of the dissociation of air in the boundary layer. It appears, however, 
that in the transformations of the energy equation which give rise to the 
parameter, the thermal conductivity itself is interpreted as an effective 
conductivity. Thus a direct comparison with the variable (Pr)ef above 
is difficult. 

5 .  COUETTE FLOW 

5.1. Walls at equal temperature 
We turn now to Couette flow, the steady flow between two plane walls. 

Qne wall is stationary and the other is in uniform motion in its own plane. 
'The equations describing such a flow become, for the simplified gas, 

PD d 2 4 d y 2  -$?(a, - a,, 4) = 0, 
pd2u/dy2 = 0, 

k d2T/dy2 +pDAho d2a,/dy2 + p ( d ~ / d y ) ~  = 0, 
where 4 is a non-dimensional temperature defined below. 

walls and let 
Let us restrict our attention first to flows between equal temperature 

where us is the velocity of the moving wall, Tw is the wall temperature, 
s the distance between the walls and Le is, as before, the Lewis number. 
The reaction rate law has again been put in a form which implies that there 
would be no atoms in an equilibrium mixture at the wall temperature. 
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Thus, we have 
d2u/dV2 - G(u - 4 )  = 0, 

d2+ldy2 + Hd2uldT2 + U2(du"/d'I)2 = 0. 

u" ='I, 

(12)l 
d2u"/dq2 = 0, (13 1, 

(14) 
The solution to equation (13) satisfying the boundary conditions is 

and the dissipation term in (14) becomes a uniformly distributed heat 
source of strength U2. Hence, for a fixed value of U ,  the energy flux 
through the walls is independent of G and H a n d  simply equal to the energy 

5 

.4 

3 

'I 
.2 

./ 

0 
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z .2 I 
I I 1 1 

/ O  4 
(4 Po t 

.25 .50 .75 

, 
.- 

7 
.75 L O  

cc 
K c .  

Effect of Figure 5. Couette flow, non-catalytic walls at equal temperature, H = 9. 
reaction rate parameter G. (a) Temperature profile. ( b )  Atom concentration 
profile. 

flowing from the source. The effect of the diffusion will then be to reduce 
the temperature gradient (and hence the temperature) required to transfer 
the energy to the walls. 

The boundary conditions are 

and, when the walls are not catalytic, 
d(0) = 4(1) = 0 

Solutions to equations (12) and (14) satisfying these conditions with 
(1 + H )  = 10, U = 1, and for various values of G, are shown in figure 5 .  
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In this figure and in the following, $u,c, denotes the non-dimensional 
temperature at the centre of the channel when the gas does not dissociate ; 
its value is 8.  The solutions in this case are symmetrical about the channel 
centreline, and again only half the channel is shown. 

Since du/dq = 0 on the walls and the energy flow from the distributed 
source is given, the temperature gradient on the walls is independent of G. 
As G increases, again, as in the preceding section, the fluid approaches 
chemical equilibrium except in the neighbourhood of the walls. 

On the other hand, when G + 0 the temperature distribution becomes 
that for an undissociated gas while a assumes the equilibrium value for the 
average temperature. 

I- __ 
0 u  t (4 

Figure 6. Couette flow, catalytic walls at equal temperature, H = 9. Effect of 
reaction rate parameter G. (b)  Atom concentration profile. 

As in the simple heat transfer analysis, the effect of catalytic reaction at 
the walls will be illustrated by solutions with a(0)  = cc(1) = 0. Figures 6 ( a )  
and 6 ( b )  summarize these solutions. As expected, a large value of G brings 
the gas to equilibrium. (Note that the cc scale in figure 6 ( b )  has been 
changed.) But now as G+O all the atoms disappear while the temperature 
again becomes that of an undissociated gas. The surface reaction is 
essentially a sink for the atoms. 

The above calculations have dealt with the effects of variation in the net 
rate of dissociation and recombination. Another important property of 
the mixture is the diffusion coefficient. This coefficient, D, appears in H 

(a)  Temperature profile. 
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as well as in G. Therefore, a change in G alone should be visualized as 
a variation in the reaction rate or channel width, not of D. We may vary D 
alone by holding the product GH constant while we vary H .  When there 
is no diffusion ( H  = 0) and the walls are non-catalytic, the temperature is 
unaffected by dissociation (see figure 7) even though the mixture is in 
chemical equilibrium: all the energy is flowing by thermal conduction. 
As D -+ co ( H  -+ co) the atom concentration becomes uniform, as one 
would expect, 

- 
(4 @u. c. 

Figure 7. Couette flow, non-catalytic walls at equal temperature, GH = 900. Effect 
of diffusion coefficient. (a) Temperature profile. (b) Atom concentration 
profile. 

5.2. Comparison with the boundary layer 
All the examples just discussed were ones in which the walls were held 

at equal temperatures. We consider next boundary conditions that are 
more suggestive of boundary-layer flows. The upper plate, 7 = 1, is 
visualized as the edge of the boundary layer and the lower as the wall. 
For instance, the conditions 

$(I) = 0, K(1) = 0, 

would correspond to the flow of an undissociated, cool gas past an insulated, 
non-catalytic wall. 
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The solution in this case is already contained in figure 6 if the centre- 
line there, 7 = 0.5, is taken to be the insulated wall and the station 7 = 0 
viewed as the ‘ free stream ’. The fall in the wall ‘ recovery temperature ’ 
as G increases is shown by the values at 7 = 0.5. It should be remembered, 
however, that the reason for the reduction in this case is the enhanced 
conduction from the fluid of the dissipated energy. In the boundary layer 
there is an additional effect. The temperature is generally reduced through- 
out the layer because a large amount of the kinetic energy entering the layer 
is absorbed in dissociating the new fluid continually entering. 

Another case of interest is the flow of a dissociated gas past a cool wall. 
The corresponding Couette boundary conditions are 

q i )  = 1, e(o) = 0, 

a(1) = 1, a(0 )  = 0 or - = 0, : /n = o  
where we have redefined U2 and H by 

u,2 PY L e  Ahoaln 
lJ2 = H =  

CISTs- Tw) ’ C,(Ts- Tw) ’ 
and now 

T -  Tw e=- ,  
Ts- TUJ 

where T, is the temperature at y = s. Equations (12), (13) and (14) are 
unaffected by this change. 

The non-dimensional heat transfer to the cool wall, the quantity of 
greatest interest here, is defined by 

and is equal to d8ldq at 7 = 0 when the wall is not catalytic. An approximate 
expression for this quantity, valid when exp(G(1 + H))lI2 B 1, is 

‘The heat transfer increases with G and 

lim qz = 1 + H +  &U2. 
G+ m 

When the cool wall is catalytic, a(0 )  = 0, and the non-dimensional 
energy flux to the wall by thermal and diffusive transport is 

a quantity equal to 1 + H +  frU2 whatever the value of G. 

equation (14) (with C$ replaced by 8) yields 

The conditions O(0) = 0, O(1) = 1 require 

(d0ld7+Hd~/dq),=o, 

If the gas is assumed to be in equilibrium initially, then cc = 8, and 

O+H8 = - $ U 2 ~ 2 + C ~ ~ + C z .  

C 2 = 0 ,  C l = l + H + & U z ,  
F.M. I 
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and thus 

5.3. A mechanical analogy 
A mechanical analogy, helpful in visualizing the form of the solutions 

discussed in this and in the preceding section, can be developed as follows. 
Consider two strings, one weightless and under tension H ,  the other 

weighing U2 per unit length and under unit tension. Denote the weightless 
string displacement by a and the other by 0. Let the strings be connected 
by a distributed spring, an elastic sheet, with spring constant per unit 
width equal to G H .  

The force balance on the M string requires 
Hd2a/dq2 = - G H ( $ - a ) ,  

and the 0 displacement satisfies 

A rearrangement yields the Couette flow equations and setting U2 = 0 
yields the simple heat transfer case. 

d20/dT2 = - U2 + GH(0 - a) .  

Figure 8. Mechanical analogy. 

In  the sketch (figure 8) the boundary conditions are those for catalytic. 
walls at equal temperature. We can enforce the non-catalytic condition, 
(da/dq)wnll = 0, by connecting the a string to frictionless sliders on the 
wall. The vertical component of the force applied to a wall by the strings. 
are d0/dq and Hduldq. Thus, these forces are analogous to the energy 
flowing into the wall by thermal conduction and diffusion, respectively. 
A variation in the reaction rate constant g corresponds to a change in the 
spring constant G H  with all other parameters (including H )  fixed. 

6. LAMINAR BOUNDARY LAYER 

6.1. Solution of the energy equation 
In  this final section we discuss the flow of a gas past a flat plate in! 

circumstances in which dissociation and/or recombination may occur 
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within the boundary layer. Three recent papers have dealt with the heat 
transfer in laminar boundary-layer flows of a dissociated gas. Lees (1956) 
studied two limiting cases of heat transfer to blunt-nosed bodies at 
hypersonic speeds, the case of chemical equilibrium, and that of no 
recombination except possibly at the surface within the boundary layer. 
Fay & Riddell (1956) obtained affine solutions in the neighbourhood of 
the stagnation point for those limiting cases and for a finite recombination 
rate. Kuo (1957) studied the laminar boundary layer of a gas in chemical 
equilibrium on a flat plate. 

We again consider the gas to  consist of two components, atoms and 
molecules. The usual boundary-layer approximations* to equations (2), 
(4), (5) and (6) in 5 2 are : 

Here the pressure has been assumed constant, which is, however, a poor 
approximation near the leading edge of a flat plate at velocities high enough 
to dissociate air. The equations might be better associated with the flow 
past a surface shaped to minimize the pressure variation, a wind-tunnel 
wall, say. In  the analysis which follows immediately below, the simplifi- 
cations introduced in 9 3 are not necessary, and they will be first introduced 
in $6.2. 

Lees (1956) has shown that the energy equation takes a much simpler 
form when the Lewis number is unity. To  see this, note that 

with 

Then 

h = a,h1+a,h2 

T 
hi = 1 (c,)JT+h;. 

0 

ah - aT au 
- = c - +(h1-h2)--1, 
aY aY aY 

where cp = ul(C,), + a2(C.1,)2. Thus, the first term on the rig,,t-hanc side 

*Reaction rates may in many cases be high enough to confine the region of 
departure from chemical equilibrium to the neighbourhood of the plate leading edge. 
The use of boundary layer equations to calculate the non-equilibrium flow under 
these conditions would, of course, be incorrect. 

I 2  
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of equation ( 1 8 )  can be written 

a M  1 k + (hl-h,) (Le-  1) 1 aY , 
CP 

where, now, Le = pDcp /k .  Hence, when Lc = 1, the term 

a (" "> 
aY c, aY 

contains the energy flux due to diffusion as well as the usual heat flow 
caused by the thermal gradient. Now the energy equation can be written 

p U - - + V Z )  = - ( - - )+p(g)2.  a k ah ( :z ay ay c, ay 
If we have boundary conditions on h or conditions on T and M~ that determine 
the boundary conditions on h, then this equation together with (15) and (17) 
may be solved by the procedure of Chapman & Rubesin (1949). This 
solution is obtained without reference to equation (16) and, hence, does 
not require knowledge of the reaction rate. The individual distributions 
,of temperature and atom concentration, however, would not be known. 
Interesting flows in which the enthalpy boundary conditions are known 
at the wall are flow past an insulated and non-catalytic plate, for which 

"1 - 0, on y = 0 ;  ah - aT - = C - +(hl-h,)- - 
aY aY aY 

and flow past a wall at known temperature on which a catalytic reaction 
maintains chemical equilibrium, for which 

h(x, 0) = %(T,)hl(TW) +a,(T,)h,(T,), 
in which the u's depend only on temperature since the pressure is constant. 

We assume that the properties at the edge of the boundary layer are 
known and are independent of x. Again this is not a realistic assumption 
for the flow immediately following a strong leading-edge shock. The 
Chapman & Rubesin procedure then follows. First introduce the stream 
function defined by 

Then in x, $ coordinates the momentum equation becomes 

pu = p m  a*/ay, P7.' = -Pm a*/ax. 

au - i a  
ax - p; @($? 6). 
au - QW ;* (. $). 

Next we assume pp = Cpmpm, with C a constant, then 

ax pa3 

Lees (1956) and Kuo (1957) justify this approximation for air in chemical 
equilibrium at high enthalpy levels. Here, where equilibrium does not 
necessarily exist, the approximation, even if less accurate, has little influence 
on the nature of the following qualitative results. The energy equation (19) 
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becomes, when the Prandtl number p / k  is constant, 

---- 
ax pc0pr a$ 

Let 
h-h,  * -  P 

u m  hm Pa 
, I " - - ,  h* = - U u" = - 
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where L is a reference length and the subscript co denotes free , .  .stream 
conditions. Then we have 

and 
ah* - 1 a ah" u2 u" - --- 
ax* Pr a+* (.. i$) + a*($) * 

The solution of (20) is 

where 7 is defined by f (7) = +"/%'x" and f is the Blasius function satisfying 
u" = 9f'(7),  

ff"+f = 0, 

f'( co) = 2, f ' ( 0 )  = f ( O )  = 0. 
Since u* is a function only of 7, it is convenient to write the energy equation 
in x", 7 coordinates 

Chapman & Rubesin find, by separation of variables, a solution of this 
equation (in their analysis, T is the dependent variable) for a wall 
temperature that varies with x. The solution will, of course, be applicable 
here when the wall enthaipy is a given function of x. 

When the wall is non-catalytic and insulated, the boundary conditions 
are h"(x*, a) = 0 and ah"(x*,O)/av = 0. These conditions are satisfied 
by a solution that depends only on q. This particular solution, denoted 
by N(7) ,  satisfies 

N" + Pr fN' = - &Pr(u?J/h,)(f")2, 

" ( 0 )  = 0, N (  a) = 0, 
from which we get 

where 
N = B(U2,/hm)+?), 

a(?) = +Pr jp [ f " ( E ) I P '  1' [f"(u)12--" dud(. 
0 

The function u(r,) for Pr = 0.72 is given by Chapman & Rubesin (1949, 
figure 4). 
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If the free stream is undissociated and the gas in the boundary layer 
assumed to be in chemical equilibrium, then the above solution becomes 
,essentially that obtained by Kuo for this case. 

6.2. The temperature and concentration projiles 

As remarked earlier the above solution yields no information about the 
temperature and concentration profiles when the reaction rate is finite. 
'The qualitative behaviour of these variables can be obtained if we introduce 
approximations of the kind discussed in 3 3. Again let h = C, T + Ahoa,, 
and assume that 

where T X  = ( T -  T,)/Tm. Thus we are assuming that there are no atoms 
in the free stream and that any increase in temperature above the free stream 
value causes dissociation. The factor p i p ,  is introduced into the reaction 
rate law for convenience ; when it is present the energy and concentration 
equations are linear in the x*, q coordinates defined above. 

With these expressions for h and m, Kl and with the help of equation (16), 
the energy equation becomes, in the x*,q coordinates, 

m1 Kl = (P/Pmlg(%L T* - 4, 

4Pr LAhog(aln. T" - ul)x* + 
p a  urn cp T m  

, 
and the concentration equation is 

where S c  = p/pD is the Schmidt number. 
that the significant x variable for changes in T" and a, is 

We see from these equations 

x"Lg - xg 
Pm% Pm% 

Calling this quantity xo and letting u = ul/uln, we get 

Now, following Marble and Adamson (1954)" we could write 

T*(x0, q) = TT(q) + TF1(q)xo + TgI(q)x0' + ..., 
a(x0,q) = "I(rl)+~II(q)xO+~III(q)XO"+.. .  * 

* Equations similar to (23) and (24) arise in a flame propagation problem treated 
Howarth (1938) formulated a series solution of the form shown by these authors. 

for an incompressible boundary layer problem. 
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If these series are substituted in equations (23) and (24) and like powers 
o f  xo are equated, we get 

... 
4Pr Ahoal, T;" -+ Pr f T:' - 2n Prf' T; = ( T L  - Qn-l), ql Tca 

and 
a; + scfu;  = 0 

... 

a: + Sc f K L  - 2n Scfran = - 4Sc( Tzp1 - 

Thus, the coefficients could be determined term by term when the 
boundary conditions depend only on 7. Numerical or machine solutions 
of the successive equations for T," and u, would be required, however, and 
in view of the approximation to the reaction rate, are not justified. 

We note, however, that for the case of an undissociated gas flowing 
past an insulated and non-catalytic plate, i.e. when the boundary conditions 
are 

aT"(x0,O) - 
T*(xo, CO) = 0, - 0, 

877 

then the leading terms are those that would be obtained for an undissociated 
gas ; aI is zero and TI" is the usual temperature distribution in a perfect gas 
,on an insulated plate. A heuristic argument, given below, suggests that far 
.downstream the temperature profile returns to this shape (but with a lower 
absolute magnitude). We may expect from this that the change in the 
temperature profile shape is relatively small and that the use of similar 
profiles in integrals of the energy and concentration equations would yield 
approximate equations for the change in magnitude of the temperature and 
concentration with x. 

T o  see why the temperature may be expected to have the same shape 
far downstream as at the start, recall that in Couette flow an increase in the 
"channel width increased the reaction rate constant and brought the gas 
closer to chemical equilibrium. Likewise, here the concentration gradients 
across the boundary layer which tend to keep the gas out of equilibrium 
become weaker as the thickness increases. Therefore, since gradients 
.along streamlines also decrease with x, it is reasonable to expect that the gas 
approaches chemical equilibrium as x increases. We can easily find the 
temperature and atom concentration at equilibrium if we assume that the 
Lewis number is unity. First, we have the solution for h* in this case; 
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it is the function N ( 7 )  obtained earlier. Then, since we are assuming that 
h = C, T+Ahoaln u and (the equilibrium condition) u = T", we have 

Therefore, in equilibrium, 
T* = N ( q ) / (  1 + Ahouln -). 

c, Tcc 
Now observing that N and TI" satisfy the same equation and boundary 
conditions, we see that the temperature profile has, in equilibrium, the 
same shape as it has at the leading edge but, of course, is reduced in 
magnitude. Thus, if, as the above considerations suggest, the gas approaches 
equilibrium in the boundary layer as it moves downstream, we can describe 
approximately the approach to equilibrium by setting 

T" = N(q)Cl(xO), 
in integrals of the energy and diffusion equations (23) and (24) to determine 
!J and A. 

tc = N(q)A(xO), 

We have then 

Cl jm N" dq + Pr Q fN'dq  - 2PrxOQ' Im f " d q  
0 0 

and 

A lom N dq + Sc  A /  fN'dq - 2ScxOA' 1 ,f'Ndq 
0 0 

Let 
m 

m2 4, 
and note that since 

m 

0 
1 N " d q = O  

equation (22) shows that 
m 

Il  = - lo , fN 'dq .  

Further 
m m 

f W d q = - l  f " d q = - I l .  
0 0 

Then, if we let 
m 

0 

Q + 2 x W  = 1 - Ahoul~ '2 xO(Q - A) 

I ,  = 4 j N dq, 

we have finally 

c, T ,  I1 
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and 
A+2x0A’= - X  I2 0 ( Q - A ) .  

I ,  
Eliminating 0 and setting 

we get 
226”+2(1 +z)6’+ +(z- 3)s = z ,  (27)  

where the derivatives are taken with respect to z. The initial conditions 
are 0(0) = 1 and A(0) = 0. (It is interesting that any other conditions 
at xo = 0 in equations (25)  and (26)  result in infinite derivatives in Q and A 
there.) The condition on 0 can be replaced by a second condition on A as 
follows. Differentiation of equation (26)  yields 

A‘+2xoA”+2A’ = ( I2 /I1) [x0(0’ -A’)+  0 - A ] ,  

from which we get, by the provisional assumption that derivatives at xo = 0: 
are finite, 

In terms of 6 then, the initial conditions are 

Solutions to the homogeneous equation corresponding to (27)  may be 
found in Kamke (1948, p. 451). They are z-lI2 and z-1/2e-z. From these, 
a particular solution to equation (27)  satisfying the required boundary 
conditions may be found by a formal application of standard methods. 
The solution is 

6 = 2 - 2 - 1 / 2 e - S  t-lPet dt .  (28) 1: 
An expansion of this expression about z = 0, or, better, a series solution 

of the original differential equation, yields 
m 

6 = a,zn+l,  
11 = 0 

with a. = 4/3 and 

n = 1, 2, ... . an-1 cc,, = - - 
n + 3 ’  

I n  figure 9, the solid curve extending from z = 0 to z = 4 is a plot of the 
first few terms of this series. 

The behaviour of the solution at large z also may be determined either 
from an examination of the integral in equation (28)  or from a series 
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formulation. ErdClyi (1956, p. 69), states that the integral 

ett-' dt 
b 

behaves like 
m 

ez 2 (v),z-"-", as z --f co, 
m=O 

where ( v ) ~  = 1, (v), .= u ( v + l )  ...( v+r-1), r = 1, 2, .... 
20' 

/------- 

/-- 

0 1 I 1 I I 
0 2 4 6 8 1 0  

2 
Figure 9. Atom concentration level as a function of distance along the plate. 

The use of this asymptotic expansion in the expression for S in 
'equation (28), or the substitution of a series in inverse powers of z directly 
into the differential equation yields 

m 

n=O 
6 = 2 b a r n ,  

where b, = 2 and 

b,+l = (%-Byn, 12 = 0, 1, 2, ... . 
Thus, as z approaches infinity, 6 approaches 2, and since 

we have 
l i m A =  (li-) AhOCc,, -1 . 

z +  m cp T,  
Equation (26) shows that Q approaches this same value. 
that 

Remembering 

T" = N(q)Q(xo), GC = N(q)A(xO), 
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we see that the fluid approaches a state in which T* = a, i.e. chemical 
*equilibrium. 

The above series is divergent. The values of 6 shown in the dashed 
!curve in figure 9 were computed by retaining, at each value of x, the term 
up to but not including the smallest. (See Jeffreys & Jeffreys (1950) for a 
,discussion of this procedure.) 

The concentration of atoms, then, rises from zero to 

while the non-dimensional temperature falls from N(q) to this same 
quantity. 

The author wishes to thank Professor H. W. Liepmann for his 
stimulating and encouraging interest in the problem. He is also grateful 
to Dr Gilles M. Corcos who read the original draft and suggested many 
improvements. 
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